New genus and species of *Syringophilidae* from Eurasian Reed-Warbler, *Acrocephalus scirpaceus* (*Sylviidae: Passeriformes*)

(Acari: Prostigmata)

MACIEJ SKORACKI
Department of Animal Morphology, A. Mickiewicz University, Szamarzewskiego 91, 60-569 Poznań, Poland

ABSTRACT. *Dissonus scirpaceus* gen. n. et sp. n. and *Syringophilopsis acrocephali* sp. n. (*Acarina: Syringophilidae*) is described from the quills a Eurasian Reed-Warbler, *Acrocephalus scirpaceus* (*Sylviidae: Passeriformes*).

Key words: acarology, taxonomy, new genus, new species, *Syringophilidae*, *Acrocephalus*.

The quill mite family *Syringophilidae* LAVOIPIERRE, 1953, is presently divided into three subfamilies - *Syringophilinae* including 20 described genera, - *Picobinae* with 2 genera and *Lobatinae* with only the genus *Cuculiphilus* CASTO, 1977. In the present paper I describe one new syringophilid genus and two species from a passeriform bird *Acrocephalus scirpaceus*.

The anathomical and morphological terminology and setal designations used in the descriptions follow KEThLEY (1970, 1973) and PHILIPS & NORTON (1978). All measurements are given in micrometers.

Dissonus gen. n.

This genus belongs to the subfamily *Syringophilinae* - terminal hysterosomal lobes absent in adult females, palpal tibiotarsus rounded on distal margin, setae a’ and a’’ multiserrate, legs I-IV subequal in thickness.
DESCRIPTION

Female: Hypostomal apex smooth. Lateral hypostomal teeth absent. Cheliceral digit edentate. Peritreme M-shaped; each lateral branch with 2-3 lateral chambers and 7-8 longitudinal chambers. Stylophore rounded posteriorly; not extending below propodosomal plate. Palpal tibiotarsus rounded on distal margin. All setae of body and legs smooth except a’ and a” I-IV - multiserrate with 4-7 tines. Propodosomal plate weakly sclerotized, lateral margins parallel with cleft on anterior margin. Setal pattern of propodosomal region with five pairs of setae (vi absent). Hysterosomal plate present between setae d3 and l3. Pygidal plate present, terminal setae d4, d5, l4, l5 on the pygidial plate. Setae l2, d3 and l3 shorter than d1; d3 closer to l2 than to l3. Setae d4, d5 and l5 shorter than d1; l4 longer than d1. Genital and anal series with 2 pairs of setae each. Paragenital series with three pairs of setae. MCA1 parallel, not fused to MCA2. Coxae III-IV weakly sclerotized, ornamented. Cuticular striations as in figs 1, 2. Legs subequal in thickness. Leg setae dTIII, dTIV absent, setae dFII and dGII present, setae vs’II present. Empodium I-IV 2.5 times longer than claws I-IV.

Male: Hypostomal apex smooth. Lateral hypostomal teeth absent. Cheliceral digit edentate. Peritreme M shaped each, lateral branch with 2-3 lateral chambers and 7-8 longitudinal chambers. Stylophore rounded posteriorly; not extending below propodosomal plate. Palpal tibiotarsus rounded on distal margin. All setae of body and legs smooth except a’ and a” I-IV - multiserrate with 4-6 tines. Propodosomal plate weakly sclerotized, lateral margins parallel with cleft on anterior margin. Setal pattern of propodosomal region with five pairs of setae (vi absent). Setae l1 not on propodosomal plate. Hysterosomal plate weakly sclerotized. Setae l3, d3, l4, d4, g1, g2 on the hysterosomal plate. Setae l2, d3 and l3 shorter than d1; d3 closer to l2 than to l3 Setae l4, d4 shorter than d1. Paragenital series with two pairs of setae. MCA1 weakly divergent. Cuticular striations as in figs 3, 4. Leg setae dTIII, dTIV absent, setae dFII and dGII present, setae vs’II present. Empodium I-IV 3.6 times longer than claws I-IV.

ETYMOLOGY

Dissonus - lat. different, various. The name originates from the absence of leg setae chaetotaxy dTIII and dTIV and propodosomal setae vi.

DIFFERENTIAL DIAGNOSIS

This new genus appears most similar to Aulonastus Kethley, 1970 in the loss of the following setae: vi, dTIII and dTIV. Dissonus is distinguished by present two pair of anal setae and present leg setae sc1 and sc2. These small-sized mites (520µm - 580µm) are found in the tail and under tail feathers of passeriform birds of the family Sylviidae.
Dissonus scirpaceus sp. n.

DESCRIPTION

Female: (figs 1-4). Length of holotype 573 (paratypes 527-564); propodosomal width 126 (100-141). Gnatosoma: apical margins of hypostome smooth; lateral hypostomal teeth absent; chelicerae edentate; stylophore 122-135 rounded.

1-3. **Dissonus scirpaceus** n. sp. Female: 1- dorsal view; 2 - peritreme; 3 – hypostomal lips, ventral view
posteriorly, not extending beneath propodosomal plate; peritreme M-shaped; each lateral branch with 2-3 lateral chambers and 7-8 longitudinal chambers. Idiosoma: propodosomal plate weakly sclerotized, with cleft on anterior margin, posterior margin indistinct. Hysterosomal plate present between setae d3 and l3. Pygidial plate present, terminal setae d4, d5, l4, l5 on the plate. Setae d3 closer l2

4, 5. Dissonus scirpaceus n. sp.: 4 - Female (holotype), ventral view; 5 - Male, dorsal view
than to l3. Setae l2, d3 and l3 shorter than d1. Setae d4, d5 and l5 shorter than d1; l4 longer than d1. Genital and anal series with 2 pairs of setae each. Paragenital series with three pairs of setae. All setae of body and legs smooth except tarsal setae a’ and a’’ I-IV- multiserrate with 4-7 tines.

6. Dissonus scirpaceus n. sp. Male; 7. Syringophilopsis acrocephalinellus sp. n. Female; both ventral view
Lengths: ve 23-34; sci 24-35; sce 152-167; l1 187-197; l2 58-78; l3 85-127; l4 282-327; l5 31-36; d1 190-234; d3 94-117; d4 58-88; d5 23-31; a1 and a2 subequal 12-15; g1 and g2 subequal 22-24, pg1 70-82; pg2 57-70; pg3 94-114. Legs subequal in thickness, setae d{TIII} and d{TIV} absent, setae d{FII} and vs''{II} present; MCA1 parallel, not fused to MCA2. Empodium I-IV 2.5 times longer than claws I-IV. Cuticular striations as in figs 1, 2.

Male: (figs 5, 6). Length 404-458; propodosomal width 120-141. Gnathosoma: apical margins of hypostome smooth; lateral hypostomal teeth absent; chelicerae edentate; stylophore 117-120 rounded posteriorly, not extending beneath propodosomal plate; peritreme M-shaped; each lateral branch with 2-3 lateral chambers and 7-8 longitudinal chambers. Idiosoma: propodosomal plate weakly sclerotized, margins indistinct with cleft on anterior margin, bearing setae ve, sci, d1. Setae l1 not on propodosomal plate; hysterosomal plate present weakly sclerotized. Setae l3, d3, l4, d4, g1, g2 on the hysterosomal plate. Setae d3 closer l2 than to l3. Setae l2, d3 and l3 shorter than d1. Setae d4, l4 shorter than d1. All setae of body and legs smooth except tarsal setae a' and a'' I-IV multiserrrate with 4-6 tines.

Lengths: ve 11-15; sci 14-17; sce 49-76; l1 70-81; l2 12-17; l3 11-16; l4 47-52; d1 72-91; d3 12-17; d4 14-17; g1 and g2 subequal 3-4; a1 and a2 subequal 2-3. Paragenital series with two pairs of setae, pg1 32-44; pg2 32-41; (pg3 absent). Legs subequal in thickness, setae d{TIII} i d{TIV} absent; MCA1 weakly divergent, not fused to MCA2. Empodium I-IV 3.6 times longer than claws I-IV. Cuticular striations as in figs 3, 4.

Etymology
The name *scirpaceus* refers to the host - *Acrocephalus scirpaceus*.

Type data
From quills (tail feathers) of Eurasian Reed Warbler, *Acrocephalus scirpaceus* (*Sylviidae: Passeriformes*); holotype female, 28 female paratypes, 6 male paratypes; 06.IX.1997; 15 female, 10 male from quills (tail feathers), 3 female from quills (under tail feathers); 03.IX.1997; Mierzeja Wiślana, Poland, leg. M. SKORACKI, H. SULEK. Types deposited at Dept. Animal Morphology, A. Mickiewicz University, Poland.

Syringophilopsis acrocephali sp. n.

Description
Female (figs 7-10): Length of holotype 815 (paratypes 847-870); propodosomal width 211 (211-223). Gnathosoma: apical margins of hypostome with one pair median protuberances; lateral hypostomal teeth absent; chelicerae dentate with three teeth; stylophore 197-215 rounded posteriorly, not extending beneath propodosomal plate; peritreme M-shaped; each lateral branch with 4-5
lateral chambers and 9-11 longitudinal chambers. Idiosoma: propodosomal plate
weakly sclerotized, margins indistinct, divided or deeply cleft on anterior mar-
gin, bearing setae vi, ve, sci. Hysterosomal plate absent; pygidial plate present.
Setal pattern of propodosomal region with six pairs of setae. Setae d3 closer l3

8-10. Syringophilopsis acrocephali sp. n. Female: 8- dorsal view; 9 - peritreme; 10 - hypostomal lips,
ventral view
than l2 or equidistant between l2 and l3. Setae l4, d4 longer than d1; l5, d5 shorter than d1. Genital and anal series with 2 pairs of setae each. Paragenital series with three pairs of setae. All setae of body and legs smooth except tarsal setae a’ and a’’I-IV multiserrate.

Lengths: vi 52-58; ve 229-241; sci 305-329; sce 300-352; l1 305-352; l2 330-376; l3 305-329; l4 400-411; l5 141-176; d1 285-330; d3 305-317; d4 388-400; d5 117-141; a1 35-41; a2 35-45; g1 94-96; g2 97-105; pg1 129-141; pg2 164; pg3 258. Legs subequal in thickness; MCA1 divergent, fused to MCA2 at anterior 1/3 length of MCA2. Legs with full complement of setae. Setae a’ and a’’ I-IV multiserrate with 6-16 tines. Empodium I-IV 2.3 times longer than claws I-IV. Cuticular strations as in figs 5, 6.

Male: unknown.

Etymology
The name acrocephali refers to the host - Acrocephalus scirpaceus.

Diagnosis
This new species may be distinguished by the combination of the following features:
propodosomal plate divided or cleft on anterior margin, bearing setae vi, ve, sci. Ratios of vi:ve, 1:4; ratios d5:l5:d1, 1:1:2. Apical margins with one pair of median protuberances. MCA1 fused to MCA2 at anterior 1/3 length of MCA2.

Type Data
From quills (secondaries) Eurasian Reed Warbler, Acrocephalus scirpaceus (Sylviidae: Passeriformes); holotype female and 6 female paratypes; 06.IX.1997; Mierzeja Wiślana, Poland, leg. M. Skoracki, H. Sulek. Types deposited at Dept. Animal Morphology, A. Mickiewicz University, Poland.

Remarks
Both Dissonus scirpaceus and Syringophilopsis acrocephali were picked from the same bird. D. scirpaceus was picked from tail feathers and S. acrocephali from secondary feathers. Thus that bird was the host for two different species.

I am grateful to Prof. Cz. Blaszak and Dr. J. Dabert for their critical reading of the manuscript.

References